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Introduction

The mass-shell equation is one of the basic rela-

tionships of the relativistic mechanics. This equa-

tion is given by the quadratic polynomial

p2
0 = p2

+ m2c2, (1.1)

where p2 = p2
x + p2

y + p2
z, m is the proper mass and

p0 means a non-potential part of the total energy E:

E = p0c + V (r). It easily seen that the mass-shell

equation can be interpreted as Pythagoras theorem

of right-angled triangle. This triangle has one in-

dependent angle which can be done by periodic or

hyperbolic angle. In the relativistic kinematics this

parameter is denominated as the rapidity.

In this paper we review the articles [1], [2], [3],

[4], [5], [6], [7] where we have introduced con-

cept of a counterpart of rapidity (co-rapidity) and

demonstrated its usefulness for relativistic dynam-

ics. The dynamic equations with respect to co-

rapidity leads to solution of Riccati equation. There

also it has been established a relationship between

four-rapidity and space-time coordinates. We have

shown that the rapidity can be presented as a four-

vector with time-like and space-like coordinates. In

this space-time a relativistic motion is described by

an analogue of Klein-Gordon equation.

Key-formulae linking an exponential

function with ratio of two quantities

Our construction is based on the Key-formula

which establishes some natural interrelation be-

tween the ratio of a pair of quantities and an ex-

ponential function.

2.1 Parametrization of evolution with re-

spect to hyperbolic angle.

Let p0, p be components of the energy-momentum

of relativistic particle. Then, with respect to the

co-rapidity an evolution of the relativistic particle

is generated by the following quadratic polynomial

F (X) := X2
− 2p0X + p2, (2.1)

with distinct positive real roots x1, x2, so that,

2p0 = x1 + x2, p2
= x1x2. (2.2)

The coefficients p0, p
2 are real numbers and p2

0 > p2.

The solutions of equation (2.1) are defined by

x1 = p0 + mc, x2 = p0 − mc, mc = +

√

p2
0 − p2,

(2.3)

where m is the proper-mass. The accompanying

matrix of the polynomial F (X) is defined by

E =

(

0 −p2

1 2p0

)

. (2.4)

Consider an evolution generated by matrix E.

Write the Euler formula

exp(Eφ) = E g1(φ) + I g0(φ), (2.5)

I-is a unit matrix. Form the following ratio

exp((x2 − x1)φ) =
x2 g1(φ) + g0(φ)

x1 g1(φ) + g0(φ)
=

x2 + D

x1 + D
,

(2.6)

where

D =
g0(φ)

g1(φ)
. (2.7)

Let φ = φ0 be the point where g0(φ0) = 0. Then,

exp((x2 − x1)φ0) =
p0 + m

p0 − m
. (2.8)

Consequently, we have the following dependence

p0, p of φ0:

p0(φ0) = m coth(mφ0), p(φ0) =
m

sinh(mφ0)
.

(2.9)

The Key-formula (2.6) closely related with defini-

tion of the cross-ratio. In fact, from (2.7) it follows

exp((x2 −x1)(φu −φv)) =
x2 − D(φu)

x1 − D(φu)

x1 − D(φv)

x2 − D(φv)
.

(2.10)

Hence, the quantity under exponential function, i.e.

the logarithm of the cross-ratio,

(x2 − x1)(φu − φv) = log{
x2 − D(φu)

x1 − D(φu)

x1 − D(φv)

x2 − D(φv)
}

(2.11)

is the distance in half-plane model of Lobachevsky

space proposed by Poincaré.

Now, consider the quadratic polynomial

F (Y ) := Y 2
− 2pY + p2

0, (2.12)
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which differs from (2.1) by transposition of the co-

efficients p0 and p. Since p2
0 > p2, two solutions of

equation F (Y ) = 0 are given by complex conjugated

numbers:

y2 = p+im, y1 = p−im, m = +

√

p2
0 − p2. (2.13)

In these terms the Key formula is written as

exp(i2mθ) =
p(θ) + im

p(θ) − im
. (2.14)

From this formula it follows another representation

of the energy-momentum

p(θ) = m cot(mθ), p0(θ) = m
1

sin(mθ)
. (2.15)

Since formulae (2.9) and (2.15) are related to same

physical quantities, we come to the next relation-

ships between hyperbolic and periodic trigonomet-

ric functions

tanh(mφ) = sin(mθ), or, sinh(mφ) = tan(mθ).

(2.16)

The relationships between φ and θ can be presented

also as follows

exp(mφ) =
1 + sin(mθ)

1 − sin(mθ)
=

1 + tan
mθ
2

1 − tan
mθ
2

, (2.17a)

exp(imθ) =
1 + i sinh(mφ)

1 − i sinh(mφ)
=

1 + i tanh
mφ
2

1 − i tanh
mφ
2

,

(2.17b)

or in more compact form

tan
mθ

2
= tanh

mφ

2
. (2.18)

Notice, when m = 0, φ = θ.

Also, it is important to note that the differenti-

ation θ with respect to φ coincides with the differ-

entiation of the distance with respect to coordinate

time, i.e. with the velocity:

dθ

dφ
=

dr

dt
=

p

p0

. (2.19)

Klein-Gordon equations for

energy-momentum of classical

relativistic particle in the space of

rapidity

For the sake of convenience in this section let us

use for derivatives short notations

d

dφ
= d,

d

dθ
= ∂.

Then differentiating formulae (2.9) and (2.15) we

come to the following system of differential equa-

tions

dp0 = −p2, dp = −pp0, ∂p0 = −pp0, ∂p = −p2
0.

The operators d and ∂ do not commute. Introduce

two dimensional vector of a state by

Φ(p0, p) =

(

p0

p

)

.

Calculate actions of the operators d2
− ∂2 and d∂ −

∂d on this vector:

(d2
− ∂2

)Φ(p0, p) = m2
Φ(p0, p),

(∂d − d∂)Φ(p0, p) = m2

(

0 1

1 0

)

Φ(p0, p). (3.1)

It is seen that equation (3.1) is nothing else than two

dimensional Klein-Gordon equation. Comparing

this equation with two dimensional Klein-Gordon

equation written in terms of space-time coordinates,

also taking into account (2.18), we come to conclu-

sion that the parameter φ is a time-like parameter,

whereas the parameter θ is an analogue of a space

coordinate. In order to pass to the Klein -Gordon

equation in four-dimensional Minkowski space with

signature (+−−−) we shall extend the parameter θ

till to three dimensional vector. In this way we ar-

rive to covariant formulation of evolution equations.

The momentum is a spatial part of the four-vector

energy-momentum with components pk, k = 1, 2, 3.

Now, instead of φ we will use the letter ρ0, and θ

has to be replaced by spatial part of four-vector of

rapidity containing components ρ1, ρ2, ρ3.

In these variables the evolution equations have to

be written in a Lorentz-covariant form. The evolu-

tion equations we shall extend as follows. The single

variable p is replaced by the components of three-

vector of momentum, pk, k = 1, 2, 3. The square p2

means p2 = −pkpk. In this way we arrive to the

following set of equations

(a) d0 p0 = −pkpk, (b) d0 pk = pkp0, k = 1, 2, 3.

(3.2)

Hereafter we use the following notations for deriva-

tives

∂k
=

∂

∂ρk
, d0

=
d

dρ0

,

and adopt, so-called, a summation convention, ac-

cording to which any repeated index in one term,

once up, once down, implies summation over all its

values.

Remember, however, that there exist some func-

tional dependence between ρ0 and ρk, k = 1, 2, 3, so
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that the spatial variables are functions of the time-

like parameter, i.e., ρk = ρk(ρ0), k = 1, 2, 3. This

means, the full derivative with respect to ρ0 is

d0p0 = −pkpk =
dρk

dρ0

∂

∂ρk
p0. (3.3)

On making use of equations (3.2), we get

d0p0 = p2
= −pkpk = pk

dρk

dρ0

p0. (3.4)

In order to provide this equality we have to take

pk
dρk

dρ0

=
p2

p0

. (3.5)

Our purpose is to complete the evolution equa-

tions (3.2) with an equation containing the following

derivative
∂

∂ρn
pk.

For that reason let us re-write equation (3.1) as fol-

lows
d

dρ0

pk =
dρn

dρ0

∂

∂ρn
pk = pkp0.

In order to provide this equality we have to suppose

that

∂

∂ρn
pk = pkpn p2

0

p2
. (3.6)

One may easily check that formula (3.6) is in accor-

dance with (3.1) and (3.2).

Equations with second order derivatives.

Firstly, calculate the second order derivatives of

p0 and p with respect to time-like variable ρ0. We

have,

d

dρ0

d

dρ0

p0 = −2pkpkp0 = 2p2p0. (3.7)

Secondly, calculate action of the Laplace operator

on p0:

∂k∂k p0 = −p2
0p0 + pkpkp0 = −p3

0 − p2p0. (3.8)

Joining this equation with (3.7) we come to Klein-

Gordon equation for p0

d0d0 p0 + ∂k∂k p0 = −m2 p0. (3.9)

Now calculate action the Laplace operator on pk.

On making use of formulae (3.6) and (3.2) we get

∂n∂n pk = ∂n
( pkpn

p2
0

p2
) = −2pkp2

0. (3.10)

Joining this result with

d0d0 pk = pkp2
0 − pkpnpn = pkp2

0 + pkp2,

we come to analogue of Klein-Gordon equation for

pk:

∆ pk + d0d0 pk = −m2 pk. (3.11)

From formula (3.5) it follows

dρk

dρ0

= vk
+ Mklpl, (3.12)

where

vk
=

dxk

dx0

is the velocity with respect to coordinate time,

Mkl = −M lk is an arbitrary anti-symmetric ten-

sor.

In the relativistic quantum mechanics the Klein-

Gordon equation is obtained simply by using some

conventional receipt according to which components

of four-momentum in the mass-shell equation are

replaced by corresponding differential operators as

follows

pk = −ih̄
∂

∂xk
, p0 = ih̄

∂

∂x0
.

So, we come to the following correspondence

h̄ρµ
⇒ xµ,

∂

∂ρµ
= h̄

∂

∂xµ
. (3.13)

Extension of de Broglie formulae

Define energy-momentum with respect to vari-

ables inverse to φ, θ:

φ =
1

ρ0

, θ =
1

ρ
. (4.1)

In these terms,

p0 = coth(
mc

ρ0

), p = cot(
mc

ρ
). (4.2)

For the small small values of proper mass

mc << ρ0, mc << ρ,

the following expansions hold true

p0 =
ρ0

mc
+ ..., p =

ρ

mc
+ ...

Hence at the point m = 0 we get

ρ0 = p0(m = 0), rho = p(m = 0)

The particle in the massless state displays proper-

ties of a wave. Energy of this particle is proportional

to the frequency,

p0 = h̄ω = hν = ρ0,

and the momentum is proportional to wave number

k and inverse to the length of the wave

p = h̄k =
h

λ
, (4.3)
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where h is Plank’s constant. Notice, according to

this hypothesis, λ = θ and φ = T , where T is a

period of the oscillation. Furthermore, now the re-

lation

p = mv =
h

λ
, (4.4)

can be considered as a first member of expansion of

the equation

p =
mv

√

1 − v2/c2
= mc cot(

mc

ρ
), (4.5)

for small values of mcρ, and v2/c2. Here m is the

proper mass. For small values of the proper mass

we have

v
√

1 − v2/c2
= c cot(

m0cλ

h
) =

h

m0λ
. (4.6)

or,

mrv =
h

λ
, mr =

m0
√

1 − v2/c2
.

So, we recovered de Broglie formula and realized

that the mass mr in this formula is the relativistic

mass, depending of the velocity.

We think, the energy of the particle E can be

equalized with the frequency by Plank’s formula

only if only the proper mass of the particle is zero.

In order to apply the Plank-Einstein formula

E = pc = hν, p =
h

λ
, (4.7)

which is true for the massless state, to the states

with non-vanishing proper mass, we need some for-

mula of mapping from the massless state onto the

massive one. This mapping is given by formulae

E = p0c = mc coth(
mc

µ0

), p = mc cot(
mc

µ
), (4.8)

where µ0, µ are the energy-momentum at the

massless-state. At the massless state

µ0c = hν, µ =
h

λ
.

Mapping these formulae for energy-momentum onto

the state with non-zero proper mass we get

E = p0c = mc coth(
mc

hν
), p = mc cot(

mcλ

h
). (4.9)

Relation λ with proper mass m and the velocity v

is given by the following formula

p =
mv

√

1 − v2/c2
=

h

λ
+mc

∑

n

(
1

mcλ
h + nπ

+
1

mcλ
h − nπ

).

(4.10)

Remaining only the first term of the sum in right-

hand side straightforward leads to the celebrated

de Broglie relationship between momentum and the

wave length. This approximation implies small

value of the proper mass. The particles with small

but finite value of proper masses can move with

any velocity v < c. On the other hand, we can-

not use infinitesimal value of the mass, because in

this case the velocity of the particle has to tend to

light-speed, which does not permit the formula on

the left-hand side.

In the representation for momentum as a function

of the time-like parameter we also can use a series:

p = 2mc
1

2 sinh(mcφ)
= 2

∞

∑

n=0

( exp(−2mc(n+
1

2
)φ).

(4.11)

2mc

∞

∑

n=0

( exp(−2mc(n +
1

2
)φ) =

=
1

χ
+ mc

∞

∑

n=1

(
1

mcχ + nπ
+

1

mcχ − nπ
). (4.12)

Joining these formulae into unique sum, we get

2mc exp(−mcφ)−
1

χ
= 2

∞

∑

n=1

( −exp(−(2mc(n+
1

2
)φ)+

+ mc

∞

∑

n=1

(
mc

mcχ + nπ
+

mc

mcχ − nπ
). (4.13)

Now, remember the following formulae for sine-

and cotangent functions

sin(πz)

πz
=

∞

∏

n=1

(1 −
z2

n2
),

π cot(πz) =
1

z
+

∞

∑

n=1

(
1

z + n
+

1

z − n
). (4.14)

Now, apply the first formula for the energy. Be-

cause,

P0 =
mc

sin(mcθ)
,

we write

P0 = mc
1

sin(πmcθ 1

π )
= mc

1

πz

∞

∏

n=1

1

(1 −
z2

n2 )

z =
mcθ

π
=

mc

πρ
.

P0 = mc
1

sin(
mc
ρ )

= ρ

∞

∏

n=1

1

(1 −
m2c2

n2π2ρ2 )
. (4.15)

Thus, we got the expression for energy proportional

to light-momentum ρ, with explicit form when m =

0, P0(m = 0) = ρ.
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Formula for the momentum. Because,

P = mc cot(mcθ),

we, firstly, write

P =
mc

π
π cot(πz), z = mcθ

1

π
=

mc

π ρ
.

P =
mc

π
(

πρ

mc
+

mc

π

∞

∑

n=1

(
1

mc
π ρ + n

+
1

mc
π ρ − n

).

P = ρ + mc

∞

∑

n=1

(
1

mc
ρ + nπ

+
1

mc
ρ − nπ

). (5.16)

P (m = 0) = ρ.

P =
1

χ
+ mc

∞

∑

n=1

(
1

mcχ + nπ
+

1

mcχ − nπ
).

On making use of mass-shell equation (1.1) and

by taking N instead of ∞, we come to an alge-

braic relation between mc and ρ, i.e, between in-

ertial mass and light-momentum. For the rest state

we have.

P = 0, cot(mcθ) = 0, mcθ =
π

2
± πn =

mc

ρ
.

(4.17)

Thus, at the rest ρ is quantized.
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